Assessment of Stability of Rock Slopes from Point Clouds by Facet Amalgamation Approach

A.C.T. So

Point Cloud

Point Cloud

Triangular Mesh generated from Point Cloud

Measurement of Orientations of Rock Joints by Facet Amalgamation Approach

Assumptions:

Each facet is formed by three points

Facets belonging to a specific joint plane should have similar dips and dip directions

Stereoplots of all facets should give general orientations of major joint sets

Generation of 3D mesh using point cloud using CloudCompare

Calculate dip and dip direction of each facet using in-house algorithm

Sub-vertical Joints J1 and Sub-horizontal Joints J2

Sub-vertical Joints J1 and Sub-horizontal Joints J2

Extraction of facets within the intersecting envelope (5% contour)

Sub-vertical Joints J1 and Sub-horizontal Joints J2

Extraction of facets within the intersecting envelope (5% contour)

Extraction of Facets within the Intersecting Envelope – J1

Joint Set Analysis_tr	32	- 🗆	×		
Import mesh model add	dress (obj for	mat):			
D:\11NW-D_C80\Test.la		Import			
Polar Plot					
Number of sample:	200000				
Size of point:	80				
Transparency of point:	0.002			Plot	
Export obj address: D:\11NW-D_C80 obj file name:					
J1					
Dip angle >=	65	Dip angle <=	85		
Dip Direction >=	135	Dip Direction <=	155	Export	
			1		

Joint planes formed by amalgamation of facets

Removal of Noise

Vegetation and artificial objects shall be removed prior to assessment.

Other noise such as random noise along edges is expected but should not affect the overall result.

Removal of Vegetation and Above Ground Objects by Colour Filter

Make use of RGB values

p.s. The Default values of Alpha(α), beta(β) and gamma(γ) can be adjusted if necessary.

p.s.2 the variables α , β and γ are given below,

Curvature of slope, Alpha	0.005
	the range normally between 0.0048 and 0.007
vertex(i.e. lower boundary), beta	19.5 Default
	the range normally between 18 and 20
Offset from cycle, gamma	0
Export Location	E:\Sorting_Dip\trial\20200917
Export Location	E:\Sorting_Dip\trial\20200917
Start Filtering	

Cloth Simulation Filter (CSF) for Point Clouds

To extract of ground points in discrete return LiDAR point cloud

Point cloud is inverted

A digital cloth cover the inverted surface

By analyzing the interactions between the cloth nodes and the corresponding points, the locations of the cloth nodes can be determined to generates an approximation of the ground surface

W. Zhang et al (2016)

Cloth Simulation Filter (CSF)

- Remove above ground objects ad vegetation
- An approach to model surfaces for movies, games

https://www.youtube.com/watch?v=kv5vzFB3sws

Identification of Joint Planes

Stability Assessment

Identification of Facets within Unstable Zones for Plane Sliding and Toppling

Assessment of Wedge Failure by Facet Amalgamation Approach

Assessment of Wedge Failure

- 1. Identify the facets belonging to different joint planes sharing two nodes of the facets of other joint planes (**Shared Nodes**)
- 2. Those facets with Shared Nodes are **Paired Facets** e.g. A1, B1

Joint A

Joint B

Identify and extract all Paired Facets from the attribute tables

Identification of Facets within Unstable Zones for Wedge Failure

Draw great circles of each Paired Facets and find out whether the intersecting point falls within the unstable zones of wedge failure

Joint A

Joint B

Identify and Extract Paired Facets which fall within the unstable zones of wedge failure

- 1. Amalgamate all those Paired Facets within the unstable zones of wedge failure
- 2. Superimpose those facets on photos or point clouds
- 3. Add the joint planes already identified to find out the locations of the joint planes which are subjected to wedge failure

Facet Amalgamation Approach for Other Geotechnical Studies

Cut and Fill Terraces

Tai Hang

Tai Hang

Slope Angle Maps

Mount Davis

Mount Davis

Applications of Remote Sensing in Geotechnical Studies

Attribute Table

Existing Attributes						LIDAR Data		Other remote sensing data			Other data		
Facet No.	Node 1	Node 2	Node 3	Dip	Dip direction	Classification	Return No.	Intensity	RGB	Infrared Thermography	Hyperspectural	Geology	
1													
2													
3													
4													
5													
•													
•													
n													

Applications of Remote Sensing in Geotechnical Studies

From Lai & So (2014)

Facet Amalgamation Approach for Potential Non-Geotechnical Applications

Building Footprints – BIM

TKO Industrial Estate

Floor Layout

Street Furniture

Other Potential Non-Geotechnical Applications

- Products compliance checks flatness of roofs, verticality of structures such as walls and panels
- Monitoring tilting of structures
- Quality checks of works and identification of defects

 flatness, local anomalies

Historical Sites

Taikoo Sanitarium (1891 - 1932)

Taikoo Sanitarium Site

