

How Close Are We To Fully Automate Rock Discontinuity Survey?

Lesson Learnt from Benchmarking Exercise on Digital Rock Mass Discontinuity Survey

Sigma Mascot (HK) Limited

Remote Sensing Specialist

Dr. Antonio Abellan Director at Centre for Research on

the Alpine Environment

Terminology

Planes / faces / facets

Model Comparison

Both terrestrial laser scanning (TLS) and photogrammetry are not perfect in terms of data quality

- More serious point density heterogeneity observed on discontinuities with different orientation
- Occlusion issue can be substantial especially when scans could only be possible from ground level

- Image distortion may lead to inaccurate point cloud model construction
- Quality is sensitive to environmental factors (e.g. lighting and weather condition) and camera setting
- True ground data behind vegetations are usually completely absent

Data Preparation

for Comparison

Sensiti

Analytical Assessment Major Observations

Observat

Data Preparation Methodology

Combining the TLS- and photogrammetry-derived point cloud datasets

Combining the Models

The combined model overcomes the impact of survey and data limitations

TLS-derived \triangleright Model \triangleright \triangleright Photogrammetryderived Model ٠ ٠ ٠ **Combined Model**

- Reducing area of empty data as obscured by vegetations
- Minimsing the occluded areas on subhorizontal discontinuities
- Generating an exceptionally highresolution point cloud

Specifications of the combined model:

- Subsampled to 1 cm
- File size : 4 GB
- No. of points: about 35.6 million

ion Baselin

Data A

Sensitivity Analysis

Analytical Assessment

Baseline Data for Comparison

- Produced by taking measurements on 6 sampling windows of the combined model
- Using the Compass plug-in in CloudCompare to construct best-fit planes on manually picked discontinuities
- To determine the optimal parameters adopted in analytical assessment

Analytical Tool – Discontinuity Set Extractor (DSE)

- Utilising the plane-based approach in Discontinuity Set Extractor (DSE) originated from Riquelme et al. (2014)
- Generating plane equations (Ax+By+Cz+D=0) for each planar point clusters

Sensitivity Analysis on knn value

As knn increases:

- Less susceptible to noises and local point cloud roughness
- Capability of detecting subtle discontinuities decreases due to excessive smoothing of local curvature
- Physical boundaries among individual discontinuities get more distinct
- The poles among discontinuity sets become less fuzzy in the stereoplots

ARUP

Comparing knn = 40 with Baseline:

- Min. deviation : 1.14°
- Avg. deviation: 2.97°
- Max. deviation: 7.34°

Analytical Assessment – Extracted Rock Mass Parameters

Orientation

Computed from parameters A, ٠ B and C of plane equations

By subtracting consecutive sorted • parameter D of plane equations of same discontinuity sets

By using convex hull algorithm

Major Observations

Fusion of Point Cloud Models	Overcomes the problem of occlusion of TLS Complements the low point density of digital photogrammetry	,
Compass Plug-in	Serves as an ideal tool to manually map discontinuities within resolve the safety and accessibility issues of traditional appro The manual picking process induces human biases and selec	point clouds to aches tive sampling
Discontinuity Set Extractor (DSE)	Provides a robust, reproducible and accurate solution discontinuity planes The derived information and quality of the classification is his on parameterisation	on to identify ghly dependent
Semi- automatic Trace Mapping	 Requires totally different methods and is currently technologic Optical approach (image edge detection) is seriously affected environmental factors Geometric approach (curvature mapping) demands ultration point clouds 	cally immature by the varying high-resolution
	Analytical Sensitivity Analytical Major Tool Analysis Assessment Observation	Concluding Remarks

ARUP

Concluding Remarks

• Whitman and Bailey (1967)

the use of the computerised approach does not free the engineer from making a judgement concerning the reasonableness of a solution

- Analytical tools / softwares / algorithms do not intend to offer one-click solutions
- We should always appreciate the professional judgement exercised during the assessment of the solution and the determination of the optimal parameters
 - Survey purpose

- Occlusion issues
- Limitations of remote sensing techniques
- Dimension of discontinuities
 Point cloud resolution
- Point density heterogeneity
- Presence of geological domains
- Orientation bias

- Essential to check against field mapping records
- Technological advancement is much needed to make digital trace mapping possible

 \geq

- Significant progress has been made on plane-based analysis
- Still a long journey to fully automate rock discontinuity survey

Sensitivity Analysis

nalytical

Major ervations

References

- Besl, P. J., & McKay, N. D. (1992, April). Method for registration of 3-D shapes. In Sensor fusion IV: control paradigms and data structures (Vol. 1611, pp. 586-606). International Society for Optics and Photonics.
- Riquelme, A. J., Abellán, A., Tomás, R., & Jaboyedoff, M. (2014). A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers & Geosciences, 68, 38-52.
- Riquelme, A. J., Abellán, A., & Tomás, R. (2015). Discontinuity spacing analysis in rock masses using 3D point clouds. Engineering geology, 195, 185-195.
- Riquelme, A., Tomás, R., Cano, M., Pastor, J. L., & Abellán, A. (2018). Automatic mapping of discontinuity persistence on rock masses using 3D point clouds. Rock Mechanics and Rock Engineering, 51(10), 3005-3028.
- Thiele, S. T., Grose, L., Samsu, A., Micklethwaite, S., Vollgger, S. A., & Cruden, A. R. (2017). Rapid, semiautomatic fracture and contact mapping for point clouds, images and geophysical data. Solid Earth, 8(6), 1241.
- Whitman, R. V., & Bailey, W. A. (1967). Use of computers for slope stability analysis. Journal of the Soil Mechanics and Foundations Division, 93(4), 475-498.
- Wong, D., Millis, S., Chan, K. (2019). Digital Mapping of Discontinuities, Proceedings of the 39th HKIE Geotechnical Division Annual Seminar, Hong Kong, April 2019.

We shape a better world

Thank you